This Python training course aims to efficiently equip learners with the fundamental and advanced skills required to use Python for data analysis and visualisation.
Module 1: Introduction to Python for Data Science
• Overview of Python in Data Science
• Setting up the Python environment (Anaconda, Jupyter Notebook, VS Code)
Module 2: Working with Data in Python
• Introduction to NumPy for numerical computing
• Introduction to Pandas for data manipulation
Module 3: Data Cleaning and Preprocessing
• Handling missing data
• Data imputation techniques
• Detecting and removing duplicates
• String operations and text cleaning
Module 4: Data Visualization
• Introduction to Matplotlib
• Introduction to Seaborn
• Interactive visualisation with Plotly
Module 5: Exploratory Data Analysis (EDA)
• Understanding distributions and summary statistics
• Identifying patterns and trends in data
• Correlation and covariance
• Detecting and handling outliers
• Using Pandas Profiling and Sweetviz for automated EDA